On Tikhonov’s method for ill-posed problems
نویسندگان
چکیده
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملDynamical systems method for solving linear ill-posed problems
Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning discrepancy principle for choosing regularization parameter are obtained.
متن کاملA regularization method for ill-posed bilevel optimization problems
We present a regularization method to approach a solution of the pessimistic formulation of ill -posed bilevel problems . This allows to overcome the difficulty arising from the non uniqueness of the lower level problems solutions and responses. We prove existence of approximated solutions, give convergence result using Hoffman-like assumptions. We end with objective value error estimates.
متن کاملAn Iteratively Regularized Projection Method for Nonlinear Ill-posed Problems
An iterative regularization method in the setting of a finite dimensional subspace Xh of the real Hilbert space X has been considered for obtaining stable approximate solution to nonlinear ill-posed operator equations F (x) = y where F : D(F ) ⊆ X −→ X is a nonlinear monotone operator on X. We assume that only a noisy data yδ with ‖y − yδ‖ ≤ δ are available. Under the assumption that the Fréche...
متن کاملchain least squares method and ill-posed problems
the main purpose of this article is to increase the efficiency of the least squares method in numerical solution of ill-posed functional and physical equations. determining the least squares of a given function in an arbitrary set is often an ill-posed problem. in this article, by defining artificial constraint and using lagrange multipliers method, the attempt is to turn -dimensional least squ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1974
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1974-0375817-5